The Booster Monitor Program at Fermilab:
Data Retrieval and Analysis

Chandra Lane Jacobs
August 22, 2003

Abstract

In this paper, the function of the Booster Monitor program is de-
scribed; especially the devices it can plot and why it is an important
diagnostic tool to monitor the Booster. Also, data retrieval of Booster
Monitor data from the data logger is explored, including ways to rep-
resent this data graphically in both Root and several web-based java
applications available to the public.

1 Introduction

The Booster Monitor program was created in 2001 by Gerald Guglielmo
in the Fermilab Computing Division. The current version is v3_0_2 and is
based on Application Framework v2.3.45. The Booster Monitor application
requests device snapshots from the Booster and statistically analyzes each
snapshot by calculating the mean, standard deviation, and standard devi-
ation of the standard deviation. These statistics are compared to a set of
baseline statistics, which are calculated from the previous snapshot taken by
the application. The first snapshot is thus its own baseline. The Booster
Monitor also has the ability to compare these values to a set of reference
values that the user can create.

When the incoming data differs from the baseline or reference set by
more than the user-defined tolerance, the plot is flagged and a message is
sent to the Data Logger. In this case, the baseline is reset to the deviant
values. Therefore, the real purpose of the Booster Monitor program is to
track changes over time in devices. Ultimately it is hoped that this record

of component performance can be correlated to beam quality in the Booster.
On the smaller scale, perhaps magnet or RF performance can be correlated
to changes in the loss patterns.

2 The Booster Monitor program

2.1 Accessing the Booster Monitor Program

The Booster Monitor program must be run on the Beams Division network
so that the Data Acquisition Engine (DAE) can be accessed. Therefore an
account on Nova, the Beams Division server, must be obtained. However,
to get in to Nova from outside the Beams Division also requires an Outland
VAX account. Once these accounts are obtained, one can Telnet to the
Beams Division as follows, not forgetting, of course, to add the particular
host if using Unix:

e xhost + nova.fnal.gov
e telnet -x -F outland.fnal.gov

e telnet -x -F nova.fnal.gov

Once this is done, the actual Booster Monitor program can be found on
the web, as a web-startable Java application from the Beams Division Appli-
cation index page. That means Java is needed (found at http://java.sun.com/),
but fortunately it already exists on Nova. Then do the following:

e Go to http://www-bd.fnal.gov/appix/index.html using Mozilla
e Click “from the Web” under “Launch Applications”

e Make sure the web start helper application is available to Mozilla. To do
this, go to the Edit tab and click Preferences. Then go to Navigator —
Helper Applications — New Type... and include the following settings:

MIME Type: application/x-java-jnlp-file
Suffixes: jnlp
Application: usr/local/javaws/javaws/javaws %s

e Finally, expand the B * Booster tree and double click on Booster Mon-
itor

2.2 Using the Booster Monitor Program

The Booster Monitor program consists of sixteen separate snapshot windows.
A snapshot window can look at one particular device at a time and can be
enlarged by double clicking on it. A snapshot can be reassigned to a different
snapshot window by clicking on its corresponding “Plot” tab.

To use the program, a connection must first be made to the DAE. This
is done by clicking the plug icon located at the bottom right hand corner.
This is also where the data taking node can be changed. When the DAE is
ready to take data, the plug will change colors and “plug-in.”

There are also three tabs located above the device snapshots representing
the Monitor page, the Deviations page and the Editor page. The Monitor
page plots the average device value, the Deviations page plots the standard
deviation of the device from the average, and the Editor tab allows the user
to modify the configuration.

Once a snapshot request is made, data begins filling the plots, automat-
ically rescaling if data is out of bounds. The different colors on the plots
represent the following:

e blue: baseline average value
e green: current average value

e red: sigma of the baseline average value multipled by the threshold
value, added and subtracted form the baseline average

e yellow: reference set average value

e grey: sigma of the reference set average value multiplied by the thresh-
old value, added and subtracted from the reference set average

If any point in the snapshot deviates more than the set threshold value
(which is located on the bottom panel and can be set), the plot is flagged,
and the “FLAG” color will change from green to red. The threshold value
also controls when data is sent to the Data Logger. The baseline gives an
idea of short-term stability.

To load a reference set, click the “Reload RefSet” button located at the
bottom of the program to choose a reference set. A reference set is simply
some pre-defined baseline statistics, whether it be particular device specifi-
cations, or just a set of saved baseline statistics from a previous running of

the Booster Monitor program. Thus, a reference set can also be saved by
clicking the “Save RefSet” button. Reference sets give an idea of long-term
stability.

A set of devices can either be loaded from memory or created from scratch.
To load a set of devices, hit the “ReadConfig” button on the bottom of the
program. Expand the “test” folder then click on the “test” sub-folder to see
the available device configurations.

Snapshot creation is done via the Editor tab and then by clicking the
“Add Snapshot” button. The snapshots will begin filling with data, and
the “S” located towards the bottom right of the program will increment.
This number represents the number of snapshot callbacks received. The “A”
adjacent to it represents the snapshot plot incrementor for accelerator device
array data, which the program cannot yet support.

The standard configuration for a snapshot consists of the following:

e Name: DeviceName (ex. B:QL1)

e ClockName: BOOSTER_RESET_FOR_MINIBOONE

e ClockDelay: 0 (the delay from clock event trigger)

e Length: 200 (number of points to read from device)

e Rate: 7100 (snapshot sample rate in Hz)

e Offset: 0 (offset into start of device array)

e WinSize: 20 (number of points used in calculating statistics)
e FIFO: True

e DefaultAnalysis: True

The Action Entry window will eventually allow for different statistical pack-
ages, so it need not be used in the meantime.

Also in the Editor tab is the configuration name, the threshold sigma,
and the maximum number of snapshots requested per job. These are all
user defined. Changes made in the Editor tab will not take effect until the
“Reconfig” button is hit on the main page.

2.3 Booster Monitor Output to the Data Logger

For each device, the Booster Monitor program sends an array of data to the
Data Logger. The items in the array are:

1 == clock event number [29=1D in hexadecimal]

2 == data point index

3 == average

4 == standard deviation

5 == standard deviation of the standard deviation
6 == 1.0 if baseline, 0.0 if reference set discrepancy
7 == unique user id for the session

Additionally, a heartbeat is sent periodically to the Data Logger as a means
to determine if a run is in progress. The heartbeat is also sent at the start
and end of the run. When the heart beat is sent, [2] is set to -1 while [3], [4],
[5] are set to zero.

Assuming no reference set is used, and assuming that the maximum num-
ber of points requested from the device is 200, the Data Logger sees the fol-
lowing: for the first snapshot requested, [2] simply counts up from 1 to 200 as
it is essentially its own baseline. None of these values are out of spec, as no
previous data is available to compare it to. After 200, only data that is out of
range of the threshold value is sent to the Data Logger. So [2] therefore stops
incrementing predictably, and also has some -1s interspersed to represent the
heartbeat.

Also sent to the Data Logger is the time stamp of when the data was
taken. The formula relating absolute time and points requested of a device

1S: n
?7 (1)

where %, is the event delay, n is the point number in the cycle and f is the
snapshot sample rate. Given the set values of t; = 0, n = 200, and f = 100,
the equation becomes:

tn:t0+

200
2P 98.9ms. 9
b= o0, ~ 282ms 2)

5

Thus, of the 33ms it takes beam to get around Booster, the Booster Monitor
program records 28.2 ms. In this fashion, the max n can be found:

33ms + TI00H z = 234.4ms. (3)

Thus, I do not know why more points are not typically requested.

2.4 Devices

An incomplete list of devices that the Booster Monitor program can look at
are listed below. These are devices that the program has definitely run over.
In general, the Booster Monitor program can run over any device capable of
the snapshot method. Certain devices whose data come through IRMs only
cannot be looked at by the Booster Monitor program. IRMs, or Internet
Rack Monitors, are simply our newest data collectors.

Magnets

B:QL1 — QL24 long quads

B:QS1 — QS24 short quads

B:SL1 — SL24 long skew quads

B:SS1 — 5524 short skew quads

B:HS1 — HS24 horizontal short ramped corrections

B:VL1 — VL24 vertical long ramped corrections

B:SEXTL long sextupole ramps

B:SEXTS short sextupole ramps

LLRF Information BEX bump Information Beam Loss Monitors
B:RAG B:IBEX2 B:BLMLO1 — B:BLML24
B:ROF B:IBEX3 B:BLMS01 — B:BLMS24
B:APG B:IBEX4

B:RPOS B:IBEX12

B:FPERR B:IBEX13

B:RFSUM B:IBEX14

RF Gap Envelope Phase Detector Error (for RF)

B:RFO1GE — B:RF18GE B:PDO1E — B:PDI18E

Miscellaneous

L:4VELO Linac Velocity
E:LM870 — E:LMS&71

E:TLI864

E:TLI870

2.5 Problems with the Booster Monitor Program

One problem is the Booster Monitor program’s propensity for stalling. Some-
times it freezes while snapshots are being requested from it, and no data will
be received. A possible explanation for this is that the program will wait for
a job completion callback before making another request for that clock event.
If the callback is lost, the program will not progress at all. Troubleshooting
this consists of the following:

e In the terminal window from which the program was started type
<ctrl> /

e ps -aux to find the process ID (pid)
e kill -3 <pid>

e Messages that hopefully shed some light on the problem will be out-
putted to the terminal window

A quick fix is to change nodes. The Booster Monitor program usually runs
on dse07.fnal.gov, but if for whatever reason that node is getting a lot of
traffic, switching to a more obscure node, like dse08 or dpel2, may allow the
program to run without stalling.

3 Using the ACNET Console in Conjuction
with the Booster Monitor Program

The Acnet Console is a program that looks at the entire accelerator process.
It is useful to access as a means to get current readings from Booster devices
and can therefore supplement the Booster Monitor program. To run it from
a Kerberos account do:

e xhost + cnsb5.fnal.gov

e telnet -x -F outland.fnal.gov
e rsh cnsb) x_display computername.fnal.gov:0.0 cnsrun mwm

A useful page to get Booster parameters is the B page, especially B2, B11
for devices and B43 for loss monitors.

4 Data Logger Retrieval

In this section, the retrieval of Booster Monitor data sent to the data logger
is explained. Currently, there are two ways to access this data: through raw
code run on the Beams Division that connects to the DAE, and through
web-based programs made available by Beams Division programmers.

4.1 Web-Based Data Loggers

The web-based Data Loggers are accessed the same way the Booster Monitor
program should be accessed—as a web-startable Java application. As outlined
in Section 2.1, go to http://www-bd.fnal.gov/appix/index.html using Mozilla
and click “from the Web” under “Launch Applications.” Expand the “Diag-
nostics & Utility” tree and then expand the “Synoptic Display” tree.
Several Data Logger programs are found within: two versions of “Ar-
ray Data Logger Plotter,” the “Data Logger Plotter,” and two versions of
“Thinlets-based Data Logger Plotter.” The figure beside the program names
correspond to the type of application—a yellow triangle for requiring Java
Web Start and a sheet of paper for a server-side application run without any
plug-ins in a regular web-browser. The web-startable Array Data Logger
Plotter is by far the most useful and least buggy. Entire arrays of data can
be retrieved from it and saved as an ASCII file to be analyzed later (see
Section 5). To get the Booster Monitor data, one must use the following
format for the device name: G_XXX where XXX is the device name without
B:, the usual device prefix. For example, the usual device B:QL1 becomes
G_QL1. This is very important, as this is the special retrieval “code” for
Booster Monitor data from the Data Loggers. Choosing the correct node is
also vital-for retrieving data from the the Booster Monitor program, choose
node BooMon. The user can also specify the array range—1 through 7 is rec-
ommended since that is the only useful part of the array the Booster Monitor

stores. The other properties for the Array Data Logger Plotter, such as what
time range to look at the device, are straightforward.

Also useful is the Data Logger Plotter. It cannot get full arrays, but
rather elements of arrays. So instead of requesting G_QL1, one must re-
quest G_QL1[i] where i is some value of the array. Time and node must
also be set, as usual. This data can be plotted by activating the “Plot”
button, or looked at in ASCII or HTML format. The bad news is that
to see the plot, an SVG plug-in must be obtained, which is available at
http://www.adobe.com /support/downloads/main.html.

The Thinlets-based Data Logger Plotter is very buggy, at least using
Morzilla, so it is not recommended. Also, all of the web-based Data Loggers
tend to freeze up occasionally and are not stable, especially when viewed
through Linux. They are more stable when viewed from a Windows machine.
This instability is inherent in the code and needs to addressed.

4.2 Java-Based Data Loggers
4.2.1 Retrieving Java Source Code Through CVS

Many of the Data Loggers are also available as stand-alone java programs that
sit on Nova. The easiest way to access these is through CVS, so first a CVS
account should be obtained. CVS stands for Concurrent Versions System,
a dominant open-source network-transparent version control system. It’s
basically a code repository that allows developers to access the latest code
via the Internet. The Beams Division CVS directory can be browsed online
at: http://www-bd.fnal.gov/cgi-acc/cvsweb.cgi/. To login to CVS in Unix,
do:

e set CVSROOT :pserver:domain@nova.fnal.gov: /export/cvs/java
e cvs login

To get code through CVS do:
e cvs checkout filepath

where filepath is the path to the file in the CVS repository. For instance, the
stand-alone Booster Monitor program is located at:

e gov/fnal/controls/applications/boosterMonitor /BoosterMonitor.java

Other code sits under the various folders contained in the “controls” folder.

When code is obtained via CVS, the folder structure is maintained. In
other words, the gov/fnal/controls/filepath is going to show up in whatever
directory it is requested to go to. To keep things simple, it is recommended to
only checkout CVS code from one directory—otherwise, the folder structure
will get messy.

4.2.2 Using Java-Based Data Loggers

Once the code is obtained, Java is needed to run it. Also the classpath must
be set as follows:

e export CLASSPATH=.:/usr/local/dae:/usr/local/dae/jars/govjars.jar:
/usr/local/dae/jars/hbl4r.jar: /usr/local/dae/jars/jdom-b8.jar:
/usr/local/dae/jars/servlet.jar

Note: some programs may require more jars, so the classpath will have to be
modified accordingly. However, the classpath above should work with most
programs. All additional jars should be found under the /usr/local/dae/jars
directory, and must be added one at a time to the classpath. It is suggested
to set this manually in the .bashrc file so that it is permanently in the user
environment.

To compile and run a program, go to the directory where the code was
checked out of (the directory where gov sits) and type “javac filepath.java” to
convert and then “java filepath” (without the .java suffix) to run the program.
For example, to run the Booster Monitor program from code, type:

e javac gov/fnal/controls/applications/boosterMonitor/BoosterMonitor.java
e java gov/fnal/controls/applications/boosterMonitor /BoosterMonitor

The most useful programs to get used to the Data Logger retrieval meth-
ods and structure are located in:

e gov/fnal/controls/examples/

Also, the entire Fermilab Java Control System library of packages, classes
and everything else needed to get started with the APT is located at:

e http://www-bd.fnal.gov/javadoc/build /api/

10

The most useful one is FTPExamplel.java (see Appendix A) because it is
easily modified to allow data retrieval from the Booster Monitor. It outputs
to the terminal window the requested device (with a specified array value)
from the Booster Monitor over a defined time period. The parameters must
be modified through the code, as there is no user interface.

Another useful program is LoggerTest.java (see Appendix B), which I
modified from /export/home/patrick, Jim Patrick’s directory. It now can
output an entire array of Booster Monitor data. Again, the parameters must
be modified through the code, as there is no user interface.

Both of these files modified from their original versions can be found in
my home directory on Nova:

e /export/home/cjacobsl/JavaStuff/loggertest/LoggerTest.java
e /export/home/cjacobsl/JavaStuff/gov/fnal/controls/examples/FTPExamplel.java

One final interesting program is DatalLoggerPlotterIl.java, which can be
found at:

e gov/fnal/controls/applications/DataloggerPlotter/DataloggerPlotterII.java

It has a user interface similar to the web-based Data Loggers, but it also has
the capability to plot within the program. However, it only works for some
devices and seems to only want to plot one thing at a time, even though it
has plotted more than one in the past. The useful thing about this program
is the x-axis can be changed to a device array value. Thus, it is possible to
plot G_QL1[2] versus G_QL1[3].

5 Graphical Analysis of Data Logger Data in
Root

From the Array Data Logger Plotter, an ASCII file of all the array values
for a device (ex. G_QL1[1:7]) can be obtained. Such a file can be directly
imported into Root and plotted, with some slight alterations-the first line
of the ASCII file must be removed (the line with the column headers), as
well as any invalid characters (like question marks). In other words, the file
must be purely numbers. Doing this, one can plot a given member of the
array against any other member, and thus can reproduce the snapshots in the

11

Booster Monitor program. Moreover, this method can be used to get plots
of absolute time versus the Booster monitor data, which cannot be obtained
by looking at the Booster Monitor program itself. Another interesting thing
to do is plot absolute time versus the cycle time to see where data is missing,
as well as to see when exactly the heartbeats were taken.

I have written two scripts in Root, which I include in Appendix C and
D. The script in Appendix C reads in data from an ASCII file with eight
columns and creates a basic graph capable of displaying three plots. It is
suggested to use the Array Data Logger Plotter to get the array values 1-7,
and save the data to an ASCII file, in the form filename.dat. Similarly, the
script in Appendix D reads in an ASCII file as before, but displays the data
as two separate graphs, with three plots per graph. It also displays the initial
baseline value—that is, every time the [2] array goes from 0-199 incrementally.
This way, values can be compared to the initial reading in a device. I have
included sample output for both of these programs after the code in their
respective appendices.

6 Conclusion

Many methods of data retrieval exist, but none are both easy to use and
useful; simply retrieving the data is a big first step. This paper has just
broached the topic of data analysis and graphically displaying data retrieved
from the Data Logger. The tools outlined here should facilitate further study
of the Booster Monitor program, retrieval of data thereof, as well as making
sense of the retrieved data. It is hoped that further analysis of the Booster
Monitor and its output is pursued, as it should prove to be a useful diagnostic
tool of beam in the Booster.

12

7 Acknowledgments
The following people have helped make my summer productive and enjoyable:
e Timofei Boshekov
e Janet Conrad
e Linda Coney
e Gerald Guglielmo
e Pat Karns, Mike Vincent and the other MCR. folk
e Robert Nelson and the other summer students working on MiniBooNE
e Jim Patrick

I would also like to thank Columbia University for offering me this REU,
and the NSF for sponsoring it.

13

A FTPExamplel.java

package gov.fnal.controls.examples;

import
import
import
import
import
import
import
import
import

/**

gov.
gov.
gov.
gov.
gov.

gov

gov.
gov.

fnal.
fnal.
fnal.
fnal.
fnal.
.fnal.
fnal.
fnal.

controls
controls
controls
controls
controls
controls
controls
controls

java.util.*;

.daq.
.acnet . *;
.daq.
.daq.
.daq.
.daq.
.daq.
.daq.

acquire. *;

datasource. *;
items.*;
events.*;
context. *;
util.x*;
snap.*;

Basic example job to get obtain FTP data
Use the trivial GenericPlotDisposition which

This class just prints it to the terminal

*
*
* just calls back to the client with the data.
*
*
*

Q@author J. Patrick, modified by Chandra Jacobs

*/

public class FTPExamplel implements PlotCallback {

private static String device = "G_SL1[2]";

private DaqJob job;

VELS

* This method is part of the PlotCallback interface.
* It will be called whenever a new set of readings is available

*/

public void plotData(Object request, Date timestamp, CollectionContext
context, int error, int numberPoints, long[lmicrosecs,
short[] nanosecs, double[] values) {

/%

14

Print out the readings
The values have been scaled
*/

if (error '= 0) {
String message = "ACNET_ERROR";
try {
message = AcnetError.errorCodeToText (error) ;
} catch (Exception e) {
System.out.println("Unable to decode acnet error code " + error);

return;
+
System.out.println("Error " + error + ": " + message +
" on ftp data");
return;
}

System.out.println("Received ftp data at " + timestamp + " with " +
numberPoints + " points");

for (int i = 0; i < numberPoints; i++) {

System.out.println(microsecs[i]/1000 + " " + valuesl[il);

}

Constructor for FTPExamplel

*
*
* @param devices Array of device names to read
* @param updateTime Time between readings in ms

*

public FTPExamplel(String device) {
initJob(device);

¥

/**
* Set up the DagJob to get data

15

Oparam devices Array of device names to read
Oparam updateTime Time between readings in ms

* X X *x

*/

private void initJob(String device) {
// This creates a connection to dse07 with name "ReadingTry"
DaqUser user = new DaqUser ("ReadingTry","dse07") ;

//
// We want to get data from the Accelerator (vs database, etc.)
//
DataSource from = null;
//An exception will be thrown on an illegal logger name
try {
from = new DataLoggerSource("BooMon") ;
} catch (AcnetException e) {
System.out.println("Error accessing data logger " + e.getMessage());
System.exit(-1);
}
//
// The Dispostion will be a GenericPlotDisposition
// declare this class as the callback class

//
GenericPlotDisposition to = new GenericPlotDisposition();
to.establishCallback(this) ;

//

// The Item will be a FTPRequest

//

FTPScope fs = new FTPScope(20.0); // 20 Hz

// Uncomment to restrict the duration, otherwise goes on indefinitely
// fs.setDuration(2.0);

DataloggerPlotRequest item = new DataloggerPlotRequest(device, to);

16

Date now = new Date();

//go back 10 hours

long startms = now.getTime() - 10%¥60%60%1000;
Date start = new Date(startms);

DataEvent event = new DeltaTimeEvent(start, now);

DagJobControl control = new DaqJobControl();
//
// Create the DaqJob with the above parameters
// Data acquistion does not start until job.start() is called

//

job = new DagJob(from, to, item, event, user, control);

/**

* Start the DaqJob that was created in initJob
*

*/
public void startJob() {

try {
job.start();
job.waitForSetup();

} catch (Exception e) {

System.out.println("whoops, job.start caught: " + e.getMessage());
}
}

VAL
* Main program

* @param argv Arguments, ignored in this example
*/

public static void main(String[] argv) {

17

// java FTPExamplel

FTPExamplel test = new FTPExamplel(device);
test.startJob();
}
}

18

B LoggerTest.java
/*

Basic example to fetch data from a datalogger.

This creates a "DaqJob" that fetches the

data and calls back to the receiveData method below.
It must be run on the Beams Division network.

*/

import gov.fnal.controls.daq.acquire.*;
import gov.fnal.controls.daq.datasource.*;
import gov.fnal.controls.daq.items.*;
import gov.fnal.controls.daqg.callback.*;
import gov.fnal.controls.daq.context.*;
import gov.fnal.controls.daq.events.x*;
import gov.fnal.controls.daq.util.x*;
import gov.fnal.controls.acnet.*;

import java.util.x*;

public class LoggerTest {

private DaqJob job;
private long lastReading = 0;
private int ntotal = 0;

//Inner Class to receive data
class Receiver implements PlotCallback {

/*
This method will be called back as blocks
of data are received from the data logger.
This will generally be called multiple times
as the logger data is broken up into
manageble sized blocks for large requests

public void plotData(

19

Object request,

Date timestamp,
CollectionContext context,
int error,

int numberPoints,

long[] microSecs,

short[] nanoSecs,

double[] values) {

System.out.println(numberPoints + " readings received");
ntotal=ntotal+numberPoints;

if (error '= 0) {
String message = "ACNET_ERROR";
try {
message = AcnetError.errorCodeToText (error);
} catch (Exception e) {
System.out.println("Unable to decode acnet error code "

+ error);
return;
}
System.out.println("Error " + error + ": " + message +
" on data");
return;

if (numberPoints <= 0) return;
for (int i = 0; i < numberPoints; i++) {
Date d = new Date(microSecs[i]/1000) ;
System.out.println("date: " + d + " " + "microSec: " +
microSecs[i] + " data: " + values[i]);

public LoggerTest(String logger, String device) {
DaqUser user = new DaqUser ("ReadingTry",'dse08") ;

20

//Declare callback to receive data

GenericPlotDisposition callback = new GenericPlotDisposition();
callback.establishCallback(new Receiver());
DataLoggerPlotRequest item =

new DataloggerPlotRequest(device, callback);

DataSource from = null;
try {
from = new DataloggerSource(logger) ;
} catch (AcnetException e) {
System.out.println("Error creating data logger source "
+ e.getMessage());
System.exit(-1);
}

GenericPlotDisposition to = new GenericPlotDisposition();
to.establishCallback(new Receiver());

//Establish time period for which data is desired
long now = (new Date()).getTime();

long end = now;
//gets data from 12 hours ago
long start = now - 1*24 * 60 * 60 * 1000;
Date startDate = new Date(start);
Date endDate = new Date(end);
DeltaTimeEvent event = new DeltaTimeEvent(startDate, endDate);
System.out.println("Start at: " + startDate +
" End at: " + endDate);

DagJobControl control = new DaqJobControl();

//Create the job to fetch the data
job = new DaqgJob(from, to, item, event, user, control);

21

/*
This method starts the "job" that fetches the data
It waits for it to complete, then prints the
number of points seen by the above callback
and the time spend waiting

*/
public void startMonitor() {

try {
Date dl1 = new Date();
job.start();
job.waitForSetup();
job.waitForCompletion() ;
Date d2 = new Date();
long diff = d2.getTime() - dl.getTime();
System.out.println("Time taken was " + diff);
System.out.println("Number of readings was " + ntotal);
//System.exit (0);
} catch (Exception e) {
System.out.println("whoops, job.start caught: " + e.getMessage());

//Main method. Create and start "job" to fetch data
public static void main(String[] argv) {

for (int i = 1; i < 8; i++) {

String device = "G_QL1["+ i + "]";
String logger = "BooMon";

if (argv.length > 0) {
logger = argv[0];

}

if (argv.length > 1) {
device = argv[1];

}

22

System.out.println("Reading device: " + device +
" from logger " + logger);

LoggerTest test = new LoggerTest(logger, device);
test.startMonitor() ;

}

System.exit (0);

23

C Simple Plot Example in Root

C.1 Simple Plot Code

{

//
//
//
//
//
//
//

Convert.c

This script reads in data from an ASCII file with 8 columns

and creates a basic graph.

It is suggested to use the Array Data Logger Plotter to get the data
(get the array values 1-7), and save it as an ASCII file, xxx.dat.
Author: Chandra Jacobs

gRO0OT->Reset () ;

#tinclude "Riostream.h"
#include "TGraph.h"

//

//
//

gets number of lines from the file
ifstream in;

Float_t co0l0, coll, col2, col3, col4, colb, col6, col7;
the ASCII file to be opened;
be sure to delete the column headers
in.open("QL1_Jul7-115435_Aug7-115438.dat") ;
Int_t nlines = 0;
while (1) {
in >> col0 >> coll >> col2 >> co0l3 >> cold >> colb >> col6 >> col7;

if (!in.good()) break;

nlines++;

nlines = nlines + 5;

24

//gets data
Float_t ArgO[nlines], Argl[nlines], Arg2[nlines], Arg3[nlines],
Arg4[nlines], Argb5[nlines], Arg6[nlines], Arg7[nlines];
in.close();

ifstream in;

// QL1 is an ASCII file with 8 columns of data—-
// time, plus the array sent from the BooMon.
in.open("QL1_Jul7-115435_Aug7-115438.dat") ;

Int_t lines = 0;

while (1) {
in >> co0l0 >> coll >> col2 >> co0l3 >> cold >> colb >> col6 >> col7;
if ('in.good()) break;

Arg0O[lines]=col0;
Argi[lines]=coll;
Arg2[lines]=col2;
Arg3[lines]=col3;
Arg4[lines]=col4;
Arg5[lines]=colb;
Arg6[lines]=col6;
Arg7[lines]=col7;

lines++;

cl = new TCanvas ("cl1","BooMon QL1 Data from DataLogger"
,200,10,600,400) ;

// comments here are for more plots being drawn on the same graph--
// only plotting cycle time versus absolute time with comments.
grl = new TGraph(lines, Arg2, ArgO);
/* gr2 = new TGraph(lines, Arg4, Arg0); */
/* gr3 = new TGraph(lines, Argh, Arg0); */

25

/%
/*
/*
/*

/%
/*
/*
/*

gri->SetMarkerColor (1) ;
gri->SetMarkerStyle(2);
gri->SetMarkerSize(.8);

gri->SetTitle("G_QL1: Jul 7 11:54:35 -> Aug 7 11:54:38");

gri->Draw("AP");

gr2->SetMarkerColor (2); */
gr2->SetMarkerStyle(3); */
gr2->SetMarkerSize(.8); */
gr2->Draw("P"); */

gr3->SetMarkerColor (4); */
gr3->SetMarkerStyle(5); */
gr3->SetMarkerSize(.8); */

gr3->Draw("P"); */

leg = new TLegend(.7, .15, .85, .3); */
leg->AddEntry(gri, "QL1[3]", "p"); */
leg->AddEntry(gr2, "QL1[4]", "p"); x/
leg->AddEntry(gr3, "QL1[5]1", "p"); */
leg—>Draw(); */

c1->Update();

gri->GetHistogram()->SetXTitle("Cycle Time: n = 7100Hz * time");
gri->GetHistogram()->SetYTitle("Absolute Time (s)");
gri->GetYaxis()->SetTitleOffset(1.4);

cl1->Modified();

in.close();

26

C.2 Simple Plot Output

00!

00(

00¢

00(

00¢

01X

8E:VG: L 2 BNy <- GEIpGILE Z INP 110 ¢

D Complicated Plot Example in Root

D.1 Complicated Plot Code

{

//
//
//
//
//
//

This script reads in data from an ASCII file with 8 columns

and draws 2 different graphs, arranged on a canvas,

with 3 plots on one of the graphs, and 3 on the other.

It is suggested to use Array Data Logger Plotter to get the data
(get the array values 1-7), and save it as an ASCII file, xxx.dat.
Author: Chandra Jacobs

gRO0OT->Reset () ;

#tinclude "Riostream.h"
#include "TGraph.h"

//

gets the number of lines in the file

ifstream in;

//
//

//

Float_t co0l0, coll, col2, col3, col4, colb5, col6, col7;

the ASCII file to be opened;

be sure to delete the column headers
in.open("QL1_Jul7-115435_Aug7-115438.dat") ;
Int_t nlines = O;

while (1) {
in >> col0 >> coll >> col2 >> col3 >> cold >> colb >> col6 >> col7;
if (!in.good()) break;

nlines++;
}
nlines=nlines + 1;
printf("nlines = Y%d\n", nlines);
gets data
Float_t ArgO[nlines], Argl[nlines], Arg2[nlines], Arg3[nlines],

28

//
//

//
//
//

Arg4[nlines], Argb[nlines], Arg6[nlines], Arg7[nlines];
in.close();

ifstream in;

QL1 is an ASCII file with 8 columns of data—-
time, plus the array sent from the BooMon.
in.open("QL1_Jul7-115435_Aug7-115438.dat") ;

Int_t lines = 0;

while (1) {
in >> co0l0 >> coll >> col2 >> co0l3 >> cold >> colb >> col6 >> col7;
if (!in.good()) break;

Arg0O[lines]=col0;
Argi[lines]=coll;
Arg2[lines]=col2;
Arg3[lines]=col3;
Arg4[lines]=col4;
Arg5[lines]=colb;
Arg6[lines]=col6;
Arg7[lines]=col7;

lines++;

Make an array of just baseline values

(ie, the count up from 0-199 in [2])

comment this out if the program is taking too long to run!
Int_t index, arraycounter = O0;

Int_t counter = 0;

Float_t baseline2[nlines], baseline3[nlines];

while (index < nlines) {

if (Arg2[index] == Arg2[index+1] - 1 && index < nlines
&% Arg2[index] != -1) {

29

//printf("index = %d counter = %d [2] = %d\n",
index, counter, Arg2[index]);

index++;

counter++;

if (counter == 199 && Arg2[index] == 199) {
// printf("NEWindex = J%d counter = %d [2] = %d\n",
index, counter, Arg2[index]);
counter = 0;

while (counter < 200) {
baseline2[arraycounter]
baseline3[arraycounter]

Arg2[index - 199];
Arg3[index - 199];

printf("[2] = %d baseline:%d arraycounter:%d\n",
index, baseline2[arraycounter], arraycounter);

arraycounter++;
index++;
counter++;
}
printf("[2]! = %d baseline:%d\n", index, baseline2[arraycounter]);
counter = 0;
+
}
else 1if (Arg2[index] == -1) {
printf ("FLAG:-1 index = J%d counter = %d [2] = %d\n",
index, counter, Arg2[index]);
index++;
counter = 0;
}
else {
printf ("FLAG: 1 index = %d counter = %d [2] = %d\n",

index, counter, Arg2[index]);
index++;
counter = 0;

30

//

creates canvas
cl = new TCanvas ('"Device Analysis",

"QL1 Data from Datalogger: Aug 6 11:02:23 -> Aug 7 00:35:31"

//

//

,10,40,800,600) ;
c1->Range (0,0,25,18) ;

TPaveLabel #*pl = new TPavelLabel(1,16.3,24,17.5,
"QL1 Data from Datalogger","br");

pl->SetFillColor (18);

pl->SetTextFont (32) ;

pl->SetTextColor(49);

pl->Draw() ;

TText *t = new TText();

t—>SetTextFont (32) ;

t->SetTextColor (1) ;

t->SetTextSize(0.03);

t->SetTextAlign (12);

t->DrawText(3.1,15.5,"Cycle time versus statistics");
t—>DrawText(14.,15.5,"Absolute time versus statistics");

creates pads
padl = new TPad("padl","This is pad1",0.02,0.02,0.48,0.83
pad2 = new TPad("pad2","This is pad2",0.52,0.02,0.98,0.83

padl->Draw() ;
pad2->Draw() ;

padi->cd();
padl->Range(-0.255174,-19.25,2.29657,-6.75) ;

adds graphs

grl = new TGraph(lines, Arg2, Arg3);
gr2 = new TGraph(lines, Arg2, Arg4);
gr3 = new TGraph(lines, Arg2, Argb);

gri->SetMarkerColor(1);
gri->SetMarkerStyle(2);

31

)
)

b

b

gri->SetMarkerSize(.8);
gri->SetTitle("Jul 7 11:54:35 -> Aug 7 11:54:38");
gri->Draw("AP");

gr2->SetMarkerColor(2);
gr2->SetMarkerStyle(3) ;
gr2->SetMarkerSize(.8);
gr2->Draw ("P") ;

gr3->SetMarkerColor(4);
gr3->SetMarkerStyle(5) ;
gr3->SetMarkerSize(.8);
gr3->Draw ("P") ;

//reference value
gr7 = new TGraph(lines, baseline2, baseline3);
gr7->SetMarkerColor(3) ;
gr7->SetMarkerStyle(6) ;
gr7->SetMarkerSize(.6) ;
gr7->Draw ("P") ;

leg = new TLegend(.15, .15, .5, .3);
leg->AddEntry(grl, "QL1[3]:Average reading", "p");
leg->AddEntry(gr2, "QL1[4]:Sigma", "p");
leg->AddEntry(gr3, "QL1[5]:Sigma of the Sigma", "p");
leg->AddEntry(gr7, "QL1[3]:Reference Value", "p");
leg->Draw();

gri->GetHistogram()->SetXTitle("Cycle Time: n = 7100Hz * time");

pad2->cd () ;
pad2->Range (-0.43642,-23.75,3.92778,-6.25) ;

gr4 = new TGraph(lines, Arg0O, Arg3);
gr5 = new TGraph(lines, Arg0O, Arg4);
gr6 = new TGraph(lines, Arg0O, Arg5);

gri->SetMarkerColor (1) ;

32

gr4->SetMarkerStyle(2);

gr4->SetMarkerSize(.8);

gr4->SetTitle("Jul 7 11:54:35 -> Aug 7 11:54:38");
gr4->Draw ("AP");

gr5->SetMarkerColor(2) ;
gr5->SetMarkerStyle(3) ;
gr5->SetMarkerSize(.8);
gr5->Draw ("P") ;

gr6->SetMarkerColor (4) ;
gré6->SetMarkerStyle(5) ;
gr6->SetMarkerSize(.8);
gr6->Draw ("P") ;

leg = new TLegend(.50, .15, .85, .30);
leg->AddEntry(gr4, "QL1[3]:Average reading", "p");
leg->AddEntry(gr5, "QL1[4]:Sigma", "p");
leg->AddEntry(gr6, "QL1[5]:Sigma of the Sigma", "p");
leg->Draw();

gr4->GetHistogram() ->SetXTitle ("Time (s)");
gri->GetXaxis ()->SetNdivisions(606) ;

cl->Modified();
c1->Update();

in.close();

33

ted Plot Output

D.2 Complica

BWOIS 2y 0 BUBISS]ITO X I| o U
ewbisi P10 K .
Bupess sbessay:[eli1o 4 T Ool
— " 0-
-
+ F 4 1
I T w
Hn ¥+ + 2 1z0-
h‘u % + |
Y
 FE o+ -
+ + -
°|
XN
—1¢°0

anfea euassRY:[e]L 10

ewbig sy jo ewbisilglio X

ewdis:lito K

i

Buipeas abelaay:[e] 110

34

8E:vG:LL L Bny <- GeipGiLL L Ine

SOYSYDIS SNSLIA dul1) 2INJOSqY

8S:WG:ILL L BNy <- GEIpGILL LN

SIYSYDIS SNSLd4 dul1) 3]IK)

L3330 woLf v 170

